Daily Changes in Temperature, Not the Circadian Clock, Regulate Growth Rate in Brachypodium distachyon

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Daily Changes in Temperature, Not the Circadian Clock, Regulate Growth Rate in Brachypodium distachyon

Plant growth is commonly regulated by external cues such as light, temperature, water availability, and internal cues generated by the circadian clock. Changes in the rate of growth within the course of a day have been observed in the leaves, stems, and roots of numerous species. However, the relative impact of the circadian clock on the growth of grasses has not been thoroughly characterized. ...

متن کامل

Endosperm development in Brachypodium distachyon

Grain development and its evolution in grasses remains poorly understood, despite cereals being our most important source of food. The grain, for which many grass species have been domesticated, is a single-seeded fruit with prominent and persistent endosperm. Brachypodium distachyon, a small wild grass, is being posited as a new model system for the temperate small grain cereals, but little is...

متن کامل

T-DNA mutagenesis in Brachypodium distachyon.

During the past decade, Brachypodium distachyon has emerged as an attractive experimental system and genomics model for grass research. Numerous molecular tools and genomics resources have already been developed. Functional genomics resources, including mutant collections, expression/tiling microarray, mapping populations, and genome re-sequencing for natural accessions, are rapidly being devel...

متن کامل

Posttranslational Mechanisms Regulate the Mammalian Circadian Clock

We have examined posttranslational regulation of clock proteins in mouse liver in vivo. The mouse PERIOD proteins (mPER1 and mPER2), CLOCK, and BMAL1 undergo robust circadian changes in phosphorylation. These proteins, the cryptochromes (mCRY1 and mCRY2), and casein kinase I epsilon (CKIepsilon) form multimeric complexes that are bound to DNA during negative transcriptional feedback. CLOCK:BMAL...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: PLoS ONE

سال: 2014

ISSN: 1932-6203

DOI: 10.1371/journal.pone.0100072